Program analysis and
constraint solvers

Edgar Barbosa
SyScan360
Beijing - 2014

Who am 1?2

Senior Security Researcher - COSEINC

Reverse Engineering of Windows kernel, device
drivers and hypervisors

One of the creators of the BluePill hardware
virtualisation root kit

Focus now on automation of bug finding

Topics

Program analysis
Bug finding
SAT solvers

SMT solvers

Intermediate languages

Objective

« The objective of the presentation is to show how to
use constraint solvers, including SMT solvers for
program analysis applications like reverse engineering

and bug finding.

Program analysis
Bug finding

Bug finding

« Program analysis and reverse engineering these days
are mostly dedicated to one specific goal: finding
software vulnerabilities.

o Like it or not, this is true. Reverse engineering main
use is no more only on understanding and modifying

applications, but as a support tool to find bugs.

How to find vulnerabilities?

» How to find vulnerabilities in closed-source
applications?

» Black box testing is a method of evaluating a
software system by manipulating only its
exposed interfaces.

* The most known black box testing tools are
fuzzers.

Fuzzing

* Fuzz test, or fuzzing is a software testing
technique, often automated or semi-

automated, that involves providing invalid,

unexpected, or random data to the inputs of a
computer program.

S U1 K W0 N —

Fuzzing Phases

. ldentify targets

. Identity inputs

. Generate fuzzed data

. Execute with fuzzed data
. Monitoring for exceptions
. Determine exploitability

Fuzzing — input type knowledge

» If we are going to create a fuzzer for a FTP
server, we can’t just generate random data
and send it to the tested server. It will be very
ineffective (with rare exceptions).

* It is necessary to create a fuzzer able to
understand the FTP protocol. The same

applies to the any other protocol or file
formats like .pdf or .doc.

Fuzzing - formats

The problem is that the knowledge about the
format must be inserted by the programmer.

What if the protocol/format is unknown?
What if there is a unknown checksum
algorithm?

Even when the protocol is open, some
implementations don't respect the protocol
specification.

Reverse Engineering

» With reverse engineering we can extract
protocol/format information.

» Some high-level information is lost in the
compilation process but all the information
necessary to understand how the application
works is coded inside the executable file.

* This includes the protocol and file parsers.

Fuzzing

» Fuzzers are still highly effective bug finders.

» It generates so many crashes that the problem
now has become Root Cause Analysis to
determine the exploitability of the crash.

* Does exist methods that could automate the
fuzzing process without requiring the
programmer to learn a new protocol or file
format specification?

* We are lazy and learning new formats and
protocols is time consuming.

Automated bug finding

» We want a system able to:

— Understand how the input data is able to affect the
execution of software

— audit the program functions without any previous
knowledge about protocols or file formats

— reports bugs with immediate root cause analysis results
— do not generate false positives

— increase code/path coverage automatically

Constraint Solvers
SyScan360

Constraint Solvers

 Constraint solvers to the rescue.

 Can help us to learn file formats and
protocols and to automatically increase code/
path coverage

* The idea is to translate program analysis
problems to be solved by constraint solvers.

 What are constraint solvers?

Constraint programming

“Constraint Programming represents one of the
closest approaches computer science has yet
made to the Holy Grail of programming: the user
states the problem, the computer solves it.” [E.

Freuder]

Constraint solvers

« The user specifies the constraints of the objects
(variables) using some specific language and the

solver will try to find values for each variable able to
satisfy each constraint.

Boolean satisfiability

» The most famous satisfiability problem is the
Boolean Satisfiability Problem (SAT)

* NP-complete problem!
» Even with this complexity it has been used to
solve problems in model checking, formal

verification and other areas consisting of
thousands of variables and millions of

constraints!

Propositional formulas

» SAT problems are encoded as formulas

* In propositional logic, a propositional formula
is a type of syntactic formula which is well
formed and has a truth value.

SAT solving

» Find satisfying assignment to a propositional
logic formula

* Is it possible to satisty this problem?

(e Va3 Vay) N(rg) N\ (19 V T3)

» If you want to use a SAT solver to solve your
problem, you need to translate your problem to
a boolean formula using the CNF form.

CNF

 Conjunctive Normal Form

* It is common to require that the boolean
expression be written in conjunction normal form
or "CNF". A formula in conjunctive normal form
consists:

— clauses joined by AND;
— each clause, in turn, consists of literals joined by OR;

— each literal is either the name of a variable (a positive
literal, or the name of a variable preceded by NOT (a
negative literal).

DIMACS input format

* The file can start with comments, that is lines
beginning with the character 'c'.

* Right after the comments, there is the line "p
cnf nbvar nbclauses" indicating that the
instance is in CNF format; nbvar is the
number of a variables appearing in the file;
nbclauses is the exact number of clauses
contained in the file.

DIMACS input format

* Then the clauses follow. Each clause is a
sequence of distinct non-null numbers
between -nbvar and nbvar ending with 0 on
the same line. Positive numbers denote the
corresponding variables. Negative numbers
denote the negations of the corresponding
variables.

Law of excluded middle

¢ law-of-excluded-middle
o.

pcnf 11

l1 -10

SAT - DEMO

(21 Va3V ay) A(xy) N\ (19 V 23)

SAT Encoding

(automatically generated from problem specification)

p cnf 51639 368352

<1705

~160 ..e., ((notx,) or x-)
—150 ((not x,) or Xg)

—1-40 etc.
—~130

~120
—1-80
—9150
—9140
—9130
9120 Should x, be set to False??
—9110

—9100

—9—-16 0

—17 23 0

—17 220

X4, X5, X5, €tC. are our Boolean variables
(to be set to True or False)

IBM research

10 Pages Later:

185 -9 0

18510

177 169 161 153 145 137 129 121 113 105 97
89 81 73 65 57 49 41
332517911850

136 —137 0
136 —133 0

l.e., (Xy77 OF X go OF X451 OF X453 --.
Xaq OF X55 OF X47 OF Xg OF X4 OF (NOt X, 4:))

clauses / constraints are getting more interesting...

Note x, ...

4,000 Pages Later:

10236 —10050 0

10236 —10051 0

10236 —10235 0

10008 10009 10010 10011 10012 10013 10014
10015 10016 10017 10018 10019 10020 10021
10022 10023 10024 10025 10026 10027 10028
10029 10030 10031 10032 10033 10034 10035
10036 10037 10086 10037 10088 10089 10090
10091 10092 10093 10094 10095 10096 10097
10098 10099 10100 10101 10102 10103 10104
10105 10106 10107 10108 —55 —54 53 —52 —51 50
10047 10048 10049 10050 10051 10235 —10236 0

10237 —10008 0

10237 —10009 0

10237 —10010 0

Finally, 15,000 Pages Later:

—7 260 0

7 —2600

1072 1070 0

—15 —-14 —-13 —-12 —-11 100
—15-14 -13-12-1110 0
—15—-14 —-13 -1211 -10 0
—15—-14 -13-121110 0
—{—-6-5—-4-3-20
—7—6-5-4-320
—7—6-5-43-20
—{—-6-5-4320

185 0

Search space of truth assignments: 2°9900 ~ 3.160699437 - 10'°%1

Current SAT solvers solve this instance in just a few seconds!

SAT solvers

» SAT solvers are very powerful

* There is even an internacional competition
of SAT solvers

SAT Competition 2013

SAT solvers

To use SAT solvers for bug finding we would need to
translate the semantics of x86 instructions as boolean

formulas using the DIMACS format. This would be very, very
hard to do.

There is a very cool project that translates the Bitcoin mining
problem to the CNF format to be solved by a SAT solver!!!

http://jheusser.github.io/2013/02/03/satcoin.html

Fortunately we have another very powerful type of solver, an
evolution of the SAT solvers: SMT solvers!

SMT SOLVERS

SMT solvers

» Are like SAT solvers but supports several theories,
not only boolean operators

* Extremely powerful
* Expressiveness

— Much more easy to express the semantics of the x86-64
Instructions

SMT solvers

* Allow us to determine the necessary values to
satisty code constraints

* Microsoft Z3 was used to prove the

correctness of the hyper-V hypervisor core
code.

* Microsoft SAGE project is reported to have
found several bugs on MS products.

Microsoft Z3

» /3 is a Satisfiability Modulo Theories (SMT) solver.
That is, it is an automated satisfiability checker for
many sorted (i.e., typed) first-order logic with built-in
theories, including support for quantifiers. The
currently supported theories are:

— equality over free (aka uninterpreted) function and predicate
symbols,

— real and integer arithmetic (with limited support for non-
linear arithmetic),

— bit-vectors,

— arrays,

— tuple/records/enumeration types and algebraic (recursive)
data-types.

Z3 SMT solver

Microsoft Z3 SMT solver

Online version at http://rise4fun.com/Z3
Linux/Mac/Windows

Free for non-commercial projects

USD 14,950.00 for commercial license.

Basics
Arithmetic
Bit-vectors
Arrays

Z3 theories

O

R OO0 ~NOOULT A~ WNEO

Z3 theories - Basics

Mnmonics Description

true the constant true
false the constant false
= equality

distinct distincinctness
ite if-then-else

and n-ary conjunction
or n-ary disjunction
iff bi-impliciation
Xor exclusive or

not negation

implies implication

© ® N O U1 A W N R O QO
©

e S T N O =y S G S T Y
00 N o 1 b W N - O

Z3 theories - BitVector

Mnmonics Parameters Description

bitl constant comprising of a single bit setto 1
bit0 constant comprising of a single bit set to 0.
bvneg Unary subtraction.

bvadd addition.

bvsub subtraction.

bvmul multiplication.

bvsdiv signed division.

bvudiv unsigned division. The operands are treated as unsigned numbers.
bvsrem signed remainder.

bvurem unsigned remainder.

bvsmod signed modulus.

bvule unsigned <=.

bvsle signed <=.

bvuge unsigned >=.

bvsge signed >=.

bvult unsigned <.

bvslt signed <.

bvugt unsigned >.

bvsgt signed >.

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

bvand
bvor
bvnot
bvxor
bvnand
bvnor
bvxnor
concat
sign
zero
extract
repeat
bvredor
bvredand

bvcomp
bvshl
bvishr
bvrshr
bvrotate

bvrotate

Z3 theories - BitVector

n-ary (associative/commutative) bit-wise and.
n-ary (associative/commutative) bit-wise or.
bit-wise not.

n-ary bit-wise xor.

bit-wise nand.

bit-wise nor.

bit-wise exclusive nor.

bit-vector concatentaion.

n n-bit sign extension.
n n-bit zero extension.
hi:low hi-low bit-extraction.
n repeat SnS times.

or-reduction.
and-reducdtion.

bit-vector comparison.
shift-left.

logical shift-right.
arithmetical shift-right.

n n-bit left rotation.

n n-bit right rotation.

(sim
(sim
(sim
(sim
(sim
(sim
(sim
(sim

nl1ify
nlitfy
nlity
nl1ity
nl1ify
nlity
nlity

nl1ity

N N N N NN NN

bvule
bvult
bvuge
pvugt
bvsle
bvslt
bvsge

ovsgt

#Xx0a
#X0a
#Xx0a
#Xx0a
#Xx0a
#X0a
#Xx0a
#X0a

tests

#xf0))
#xf0))
#xf0))
#xf0))
#xf0))
#xf0))
#xf0))
#xf0))

; unsigned
; unsignec
; unsignec

; unsignec
; sighed less or equal

; signed less than

; signed greater or equal
; signed greater than

less or equal
less than
greater or equal
greater than

asking questions

(declare-const a (_ BitVec 4))
(declare-const b (_ BitVec 4))

(assert (not (= (bvule a b) (bvsle a b))))
(check-sat)

(get-model)

Z 3 solver
DEMONSTRATION

Translation and Intermediate

languages
SyScan360

.text
.text
text
.text
.text
text
.text
.text
text

.text
.text
text
.text
.text
.text
.text
.text
text

: 00863614
: 00863617
: 00863618
:0086361A
:0086361D
:0086361F
: 00863622
100863622
100863622
.text:
100863628
:0086362C
:0086362E
:0086362E
:0086362E
100863632
: 00863638
: 00863638
: 00863638

00863626

Code constraints

loc 863622:

loc 86362E:

loc 863638:

movzx
push
xor
test
jz
movzx

cmp
jz
cmp
jz

cmp
jz

push

ecx, word ptr [eaX]

esi
esi, esi

CX, CX

short loc 863647
ecx, cx

CX, 20h

short loc 863655
cX, 9

short loc 863655

cX, 22h
loc_86435A

eax

; lpsz

Translation

* How to model the following instructions
using /3¢

» Suppose we control EBX value. How to use
/3 to find a value for EBX that will evaluate
JZ to TRUE?

mov eax, ebx
sub eax, ©x50
cmp eax, 0x40
jz _branch2

Translation

e Since we want to use SMT solvers to solve the
constraints of x86 code, we need to translate x86
instructions to SMT formulas!

« We have 2 alternatives:
1. Try to translate x86 directly to SMT formulas

2. Translate x86 to an Intermediate language (IL)
and then translate the IL to SMT

Xx86 -> IL -> SMT

« Most program analysis tools first translates x86 to
some intermediate language and then translate the IL

to SMT

 Clear advantage: if you need to support other
instruction sets, like ARM for example, you just need

to create the ARM to IL translator.

REIL

There are several intermediate languages available. My first
experience is with the REIL language.

REIL is a Reverse Engineering Intermediate Language
Developed by Zynamics (now Google)
Used in the BinNavi product

Translates x86-64 and ARM to REIL

There are better intermediate languages than REIL. But REIL is
easier to understand.

x86 instruction set

* There are some consideration about IL
implementation for x86 isa

» X86 instructions have side effects
» Xx86 semantics can be very complex

x86 — side effects

* push eax (intrinsic operands)

tl < eax
esp < esp -4
[esp] < t1

* add eax, ex

eax <& eax + ebx
update(eflags) //OF,SF,ZF,AF,CF,PF

REIL instruction set

o Small number of instructions

o This is great because we just need to create a small
number of translators from REIL instructions to SMT.

« Unfortunately REIL has several limitations

REIL- arithmetic

add — addition of 2 values
sub — subtraction of 2 values
mul — unsigned multiplication
div — unsigned division

mod — unsigned module

bsh — logical shift operation

REIL — bitwise instructions

e and — Boolean and
e Or — Boolean or
e XOor — Boolean exclusive or

REIL — data transfer instructions

* LDM —load a value from memory
e STM — store a value to memory
» STR —store a value in a register

000000010025D300 ldm eax, , word t@

REIL - conditional

* BISZ —compare a value to zero
* JCC - conditional jump

000000010025D660D bisz word tl1l0, , byte ZF
000000010025DA0O0O jcc byte ZF, , Ox10025E6

REIL - others

* UNDEF
* UNKN
* NOP

Support

* General purpose x86 instructions

* Doesn’t support:
— FPU

— SSE, sse2, sse3
— MMX

— Doesn’t support segment selectors :-(
—FS, GS

©10025CB

©10025D3
©10025D6
©10025DA

Basic block (x86)

notepad.exe:: SkipBlanks@4

movzXx ecx, word ds:[eax]
cmp word cx, word 0x20
jz loc _10025E6

000000010025D300:
000000010025D301 :
000000010025D600:
000000010025D601 :
000000010025D602 :
000000010025D603 :
000000010025D604 :
000000010025D605 :
000000010025D606 :
000000010025D607 :
000000010025D608 :
000000010025D609 :
000000010025D60A :
000000010025D60B :
000000010025D60C :
000000010025D60D :
000000010025DA00 :

Basic block (REIL)

1dm

[DWORD eax, EMPTY , WORD tO]

or [DWORD ©, WORD t©, DWORD ecx]

and
and
and
sub
and
bsh
xor
xor
and
bsh
and
bsh
and
bisz
jcc

[DWORD ecx, WORD 65535, WORD t1]
'WORD t1, WORD 32768, WORD t2]
'WORD 32, WORD 32768, WORD t3]
WORD t1, WORD 32, DWORD t4]
[DWORD t4, DWORD 32768, WORD t5]
'WORD t5, WORD -15, BYTE SF]
'WORD t2, WORD t3, WORD t6]

'WORD t2, WORD t5, WORD t7]

'WORD t6, WORD t7, WORD t8]

WORD t8, WORD -15, BYTE OF]
'DWORD t4, DWORD 65536, DWORD t9]
'DWORD t9, DWORD -16, BYTE CF]
'DWORD t4, DWORD 65535, WORD t10]
[WORD t10, EMPTY , BYTE ZF]

[BYTE ZF, EMPTY , DWORD 16786918]

REILbb > 23 (1/2)

(set-logic QF _BV)
(declare-fun to () (_ BitVec 32))
(declare-fun ecx () (_ BitVec 32))

(declare-fun t1 () (_ BitVec 32))
(declare-fun t2 () (_ BitVec 32))
(declare-fun t3 () (_ BitVec 32))
(declare-fun t4 () (_ BitVec 32))
(declare-fun t5 () (_ BitVec 32))
(declare-fun SF () Bool)

(declare-fun t6 () (_ BitVec 32))
(declare-fun t7 () (_ BitVec 32))
(declare-fun t8 () (_ BitVec 32))
(declare-fun OF () Bool)

(declare-fun t9 () (_ BitVec 32))
(declare-fun CF () Bool)

(declare-fun t10 () (_ BitVec 32))
(declare-fun ZF () Bool)

REILbb =2 23 (2/2)

(assert (= t10 (bvand (bvsub (bvand (bvor #x00000000 t0) #x0PPOFFFF) #x00000020) #x0000FFFF)))
(assert (= t6 (bvxor (bvand (bvand (bvor #x00000000 t0) #x000OFFFF) #x00008000) (bvand #x00000020 #x00008000))))

(assert (= SF (bvugt (bvlshr (bvand (bvsub (bvand (bvor #x00000000 t0) #x0P0OFFFF) #x00000020) #x00008000) #x0000000F)
#x00000000)))

(assert (= t7 (bvxor (bvand (bvand (bvor #x00000000 tO) #x0000FFFF) #x00008000) (bvand (bvsub (bvand (bvor #x00000000
t0) #x0000FFFF) #x00000020) #x00008000))))

(assert (= OF (bvugt (bvlshr (bvand (bvxor (bvand (bvand (bvor #x00000000 t0) #x0000FFFF) #x00008000) (bvand
#x00000020 #x00008000)) (bvxor (bvand (bvand (bvor #x00000000 t0) #x0000FFFF) #x00008000) (bvand (bvsub (bvand (bvor
#x00000000 t0) #x000OFFFF) #x00000020) #x00008000))) #x0000000F) #x00000000)))

(assert (= t5 (bvand (bvsub (bvand (bvor #x00000000 tO) #x0000FFFF) #x00000020) #x00008000)))

(assert (= t8 (bvand (bvxor (bvand (bvand (bvor #x00000000 t0) #xOOOOFFFF) #x00008000) (bvand #x00000020 #x00008000))
(bvxor (bvand (bvand (bvor #x00000000 t0) #x0000FFFF) #x00008000) (bvand (bvsub (bvand (bvor #x00000000 tO)
#X000OFFFF) #x00000020) 1#x00008000)))))

(assert (= t9 (bvand (bvsub (bvand (bvor #x00000000 tO) #x0000FFFF) #x00000020) #x00010000)))

(assert (= ZF (bvugt (ite (= (bvand (bvsub (bvand (bvor #x00000000 t0) #x0000FFFF) #x00000020) #x0000FFFF) #x00000000)
#x00000001 #x00000000) #x00000000)))

(assert (= t3 (bvand #x00000020 #x00008000)))

(assert (= t2 (bvand (bvand (bvor #x00000000 t0) #x0000FFFF) #x00008000)))

(assert (= CF (bvugt (bvlshr (bvand (bvsub (bvand (bvor #x00000000 t0) #x00POFFFF) #x00000020) #x00010000) #x00000010)
#x00000000)))

(assert (= t4 (bvsub (bvand (bvor #x00000000 t0) #x0000FFFF) #x00000020)))

(assert (= ecx (bvor #x00000000 t0)))

(assert (= tl (bvand (bvor #x00000000 t0) #XOOOOFFFF)))

(check-sat)

(get-model)

sat

(model

(define-fun t0 () (_ BitVec 32)
#x00000000)

(define-fun t1 () (_ BitVec 32)
#x00000000)

(define-fun ecx () (_ BitVec 32)
#x00000000)

(define-fun t4 () (_ BitVec 32)
#xffffffe0)

(define-fun CF () Bool
true)

(define-fun t2 () (_ BitVec 32)
#x00000000)

(define-fun t3 () (_ BitVec 32)
#x00000000)

(define-fun ZF () Bool
false)

(define-fun t9 () (_ BitVec 32)
#x00010000)

(define-fun t8 () (_ BitVec 32)
#x00000000)

(define-fun t5 () (_ BitVec 32)
#x00008000)

(define-fun OF () Bool
false)

(define-fun t7 () (_ BitVec 32)
#x00008000)

(define-fun SF () Bool
true)

(define-fun t6 () (_ BitVec 32)
#x00000000)

(define-fun t10 () (_ BitVec 32)
#x0000ffe0)

)

solution

Automation

Program Analysis and Constraint Solvers

Bug finding automation

There are several methods to evaluate in the attempt
to automate bug finding.

Some prefer static analysis and other dynamic
analysis.

Intermediate language preference is very personal.

You have to try some methods and check which one
is better for your purpose.

Automation

« The method | propose is based on the incredible
Microsoft SAGE project.

e Dynamic analysis

« Has found several bugs on Microsoft products

Process

Execute target application with an initial seed file
Trace the execution

Taint analysis

Translation of x86 code to SMT formulas

SMT used to generate new inputs

Increases code/path coverage

Execution trace

o Great tools for execution trace
« Binary instrumentation: PIN, DynamoRio

« Debuggers (slower)

Taint analysis

You don’t want to translate an entire trace to SMT
formulas

You filter only the instructions affected by user input

data (file)
Taint analysis can be implemented on top of the
intermediate language or directly from x86

disassembly

Biggest problem: system calls!

Taint analysis - syscalls

« How to apply taint analysis in a system where some
of the system calls aren’t documented? (Windows)

« How can we know what is tainted when an
undocumented syscall uses a tainted value? How do
we know if the syscall returned information is/isn’t
tainted? Do we need to trace kernel code?

« Most systems will just consider a very small subset of
the syscalls: read, write, open, ..., and create
hardcoded rules for taint propagation

Translation

This is one of the points where it is fundamental to decide if you
want or not to use an intermediate language.

It is possible to create a direct x86 to SMT translator.

Most basic solution involves the use of some template engine where
you will encode most of the translations inside a template.

Since SMT-LIB doesn’t accept multiple assignments to the same
variable, you will have to create some kind of versioning system for
variables (similar to SSA)

You can also translate directly to Python code using the awesome
/3Py interface.

Strategy

o After getting results from the Z3 solver, you have new
input values.

» What search strategy do you want to use? BFS? DFS?
Random?

» You can also give priority to traces that contains some
interesting patterns like loops, memory allocation size
calculations and others.

Demo

Conclusion
SyScan360

Conclusion

This is just an introductory presentation about the potencial of
constraint solvers for the reverse engineering tasks.

Program analysis is hard. There are lots of corner cases. Challenging.
Translation of instruction sets is hard and very time consuming.

There are a lot of things that can and need to be automated in
reverse engineering and program analysis.

SMT solvers are very powerful and the way to go. However do not
use it for everything

We need more (open source) tools.

Thank you

