
Remote code
execution via
Java native
deserialization

Introduction

● I am not a pen tester. High school dropout, no
formal training or education in security.

● Software engineer for 17 years, climatology domain

● Last 5 years focusing on security, mainly Java

● Managed Red Hat's Java middleware security team

● Now an engineering manager for a SDN company

● I love finding new 0day and popping shells!

Outline
● Java (de)serialization

● RCE via XML deserialization

● RCE via native deserialization

● RCE via XML <-> binary mapping vector

● Other InvocationHandlers?

● “Property-oriented programming” and gadgets

● Where lies the vulnerability?

Java (de)serialization

● Java has multiple serialization implementations

● XML serialization: XXE and RCE possible in multiple
implementations

● Native serialization: binary data format, with RCE
possible depending on what's on the classpath

● Dozer, Kryo and other frameworks

● Common thread: don't deserialize untrusted input
(duh!)

RCE – XML deserialization

● Alternative XML-based serialization formats

● JAXB is the standard (no known flaws)

● Other XML serialization libraries exist, and have
exposed security issues leading to RCE

● These are commonly used by big applications and
XML REST API frameworks

● We’ll look at just two examples: XMLDecoder and
XStream

● NOT reliant on classes implementing Serializable

XMLDecoder

● XMLDecoder’s XML format can represent a series of
methods that will be called to reconstruct an object

● If XMLDecoder is used to deserialize untrusted
input, arbitrary code can be injected into the XML

● Live demo: Restlet CVE-2013-4221. Fixed by
removing vulnerable functionality.

XStream

● Reflection-based deserialization

● Has a special handler for dynamic proxies
(implementations of interfaces)

● Spring OXM, Sonatype Nexus, Jenkins affected

XStream

● Attackers can provide XML representing a dynamic
proxy class, which implements the interface of a
class the application might expect

● Dynamic proxy implements an EventHandler that
calls arbitrary code when any members of the
deserialized class are called

XStream in Jenkins

● Jenkins XML API uses XStream to deserialize input

● Access to XML API -> RCE (but not such a huge
deal)

● Live demo: Jenkins

● Solution: blocked DynamicProxyConverter in
XStream wrapper class

● Upstream solution: whitelisting, with dynamic
proxies excluded by default

● More information:
https://securityblog.redhat.com/2014/01/23/java-
deserialization-flaws-part-2-xml-deserialization/

RCE – binary deserialization

● Java contains a native serialization mechanism,
that converts objects to binary data

● When deserializing, the readObject() and
readResolve() methods of the class will be called

● This can lead to vulnerabilities if a class on the
classpath has something exploitable in
readObject() or readResolve()

● How can an attacker provide binary serialized
objects?

RCE – binary deserialization

● Serialization is used as a format for transferring
objects over networks, e.g. via REST APIs

● Example #1: RichFaces state (CVE-2013-2165,
Takeshi Terada, MBSD)

● Example #2: Restlet REST framework

● Live demo: Restlet PoC

● What kind of issue could exist in
readResolve()/readObject() that would be
exploitable?

CVE-2011-2894: Spring

● Discovered by Wouter Coekaerts in Spring AOP

● Serializable InvocationHandler exposed

● Allows mapping a proxy to ANY method call on the
proxy interface

● Similar exploit to EventHandler, but more complex
setup of the serialized object graph

● More info:
http://www.pwntester.com/blog/2013/12/16/cve-
2011-2894-deserialization-spring-rce/

commons-fileupload

● Component to simplify file uploads in Java apps

● DiskFileItem class implements readObject()

● The readObject method creates a tmp file on disk:
– tempFile = new File(tempDir, tempFileName);

● tempDir is read from the repository private attribute
of the class, exposing a poison null byte flaw (file-
writing code is native, now patched)

● An attacker can provide a serialized instance of DFI
with a null-terminated full path value for the
repository attribute: /path/to/file.txt\0

● commons-fileupload code embedded in Tomcat

Restlet + DFI

● Upload a JSP shell to achieve RCE

● Solution #1: don't deserialize untrusted content

● Solution #2: don't introduce flaws in
readObject()/readResolve()

● Solution #3: type checking with look-ahead
deserialization (Pierre Ernst):
http://www.ibm.com/developerworks/java/library/se
-lookahead/index.html

● Or notsoserial:
https://tersesystems.com/2015/11/08/closing-the-
open-door-of-java-object-serialization/

Dozer XML ↔ Binary Mapper

● Uses reflection-based approach to type conversion

● Used by e.g. Apache Camel to map types

● If used to map user-supplied objects, then an
attacker can provide a dynamic proxy

● There must either be an object being mapped to with
a getter/setter method that matches a method in an
interface on the server classpath, or a manual XML
mapping that allows an attacker to force the issue.

● InvocationHandler must be serializable (implements
Serializable)

● EventHandler is not

Dozer CVE-2014-9515

● Wouter Coekaerts reported a serializable
InvocationHandler in older versions of Spring: CVE-
2011-2894

● Using Alvaro Munoz's CVE-2011-2894 exploit, I was
able to develop a working Dozer exploit. It is only
exploitable if all the aforementioned conditions are
met, and vuln Spring JARs are on the classpath

● Live demo: Dozer RCE
https://github.com/pentestingforfunandprofit/resear
ch/tree/master/dozer-rce

● Reported upstream since Dec 2014, no response:
https://github.com/DozerMapper/dozer/issues/217

Other InvocationHandlers

● Any common component is useful, but in the JDK
itself means universally exploitable

● Three other InvocationHandlers in Java 7/8:
● CompositeDataInvocationHandler

● MbeanServerInvocationHandler

● RemoteObjectInvocationHandler

● CompositeDataInvocationHandler: forwards getter
methods to a CompositeData instance. No use.

MBeanServerInvocationHandler

● Proxy to an MBean on the server. Potentially useful,
e.g. if MBeans used by JBoss Worm are present.

● Problem 1: attacker must specify correct JMX URL
● Solution 1: JMX is exposed locally on port 1099

● Solution 2: Brute force JMX URL via Java PID

● Problem 2: attacker cannot control code that is run
for any method call, on specific method calls

● EventHandler exploits work no matter which
method is invoked on the proxy object.
MBeanServerInvocationHandler simply calls the
method of the same name on the MBean.

RemoteObjectInvocationHandler

● Proxy to a remote object exported via RMI

● Problem 1: attacker must know details of a remote
object exported to the server

● Solution: JMX registry is exposed via RMI. If JMX
is exposed locally on port 1099, the attacker
could craft an object instance that points to the
JMX RMI URL

● Problem 2: attacker cannot control code that is run
for any method call, on specific method calls

● Future work: look for more potentially exploitable
InvocationHandlers

Property-oriented programming

● Instantiate a complex object graph whose root
node is serializable

● Similar to ROP, exploit conditions in classes on the
classpath so deserialization of the object graph
lands in execution of arbitrary code

● Shouts to Stefan Esser for considering this in PHP
first

● http://www.slideshare.net/frohoff1/appseccali-2015-
marshalling-pickles Slides 45 onwards

Gadget: commons-collection

● Serializable InvocationHandler in a library that is
almost universally on the classpath

● Presented at AppSecCali and still unpatched:
http://www.slideshare.net/codewhitesec/exploiting-
deserialization-vulnerabilities-in-java-54707478

● FoxGlove reported multiple vectors for untrusted
deserialization in JBoss, WebSphere, Jenkins,
WebLogic, etc.:
http://foxglovesecurity.com/2015/11/06/what-do-
weblogic-websphere-jboss-jenkins-opennms-and-
your-application-have-in-common-this-vulnerability/

Tools & future research

● Ysoserial for finding flaws and aggregating
payloads

● Look-ahead deserialization tools
● PoC by Pierre Ernst @ IBM

● Notsoserial

● Serialkiller

● More gadgets, more deserialization vectors

● Gadget entirely in the JDK would be awesome

Where lies the vulnerability?

● When at Red Hat, I assigned CVEs to vulnerable
classes, and publicly stated:

Where lies the vulnerability?

● I was wrong!

● The vulnerability lies in the application performing
deserialization of untrusted data without look-
ahead type validation

Questions?

	Slide 1
	Introduction
	Modules
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

