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Introduction

● I am not a pen tester. High school dropout, no 
formal training or education in security.

● Software engineer for 17 years, climatology domain

● Last 5 years focusing on security, mainly Java

● Managed Red Hat's Java middleware security team

● Now an engineering manager for a SDN company

● I love finding new 0day and popping shells!



Outline
● Java (de)serialization

● RCE via XML deserialization

● RCE via native deserialization

● RCE via XML <-> binary mapping vector

● Other InvocationHandlers?

● “Property-oriented programming” and gadgets

● Where lies the vulnerability?



Java (de)serialization

● Java has multiple serialization implementations

● XML serialization: XXE and RCE possible in multiple 
implementations

● Native serialization: binary data format, with RCE 
possible depending on what's on the classpath

● Dozer, Kryo and other frameworks

● Common thread: don't deserialize untrusted input 
(duh!)



RCE – XML deserialization

● Alternative XML-based serialization formats

● JAXB is the standard (no known flaws)

● Other XML serialization libraries exist, and have 
exposed security issues leading to RCE

● These are commonly used by big applications and 
XML REST API frameworks

● We’ll look at just two examples: XMLDecoder and 
XStream

● NOT reliant on classes implementing Serializable 



XMLDecoder

● XMLDecoder’s XML format can represent a series of 
methods that will be called to reconstruct an object

● If XMLDecoder is used to deserialize untrusted 
input, arbitrary code can be injected into the XML

● Live demo: Restlet CVE-2013-4221. Fixed by 
removing vulnerable functionality.



XStream

● Reflection-based deserialization

● Has a special handler for dynamic proxies 
(implementations of interfaces)

● Spring OXM, Sonatype Nexus, Jenkins affected



XStream

● Attackers can provide XML representing a dynamic 
proxy class, which implements the interface of a 
class the application might expect

● Dynamic proxy implements an EventHandler that 
calls arbitrary code when any members of the 
deserialized class are called



XStream in Jenkins

● Jenkins XML API uses XStream to deserialize input

● Access to XML API -> RCE (but not such a huge 
deal)

● Live demo: Jenkins

● Solution: blocked DynamicProxyConverter in 
XStream wrapper class 

● Upstream solution: whitelisting, with dynamic 
proxies excluded by default

● More information: 
https://securityblog.redhat.com/2014/01/23/java-
deserialization-flaws-part-2-xml-deserialization/ 



RCE – binary deserialization

● Java contains a native serialization mechanism, 
that converts objects to binary data

● When deserializing, the readObject() and 
readResolve() methods of the class will be called

● This can lead to vulnerabilities if a class on the 
classpath has something exploitable in 
readObject() or readResolve()

● How can an attacker provide binary serialized 
objects?



RCE – binary deserialization

● Serialization is used as a format for transferring 
objects over networks, e.g. via REST APIs

● Example #1: RichFaces state (CVE-2013-2165, 
Takeshi Terada, MBSD)

● Example #2: Restlet REST framework 

● Live demo: Restlet PoC

● What kind of issue could exist in 
readResolve()/readObject() that would be 
exploitable?



CVE-2011-2894: Spring

● Discovered by Wouter Coekaerts in Spring AOP

● Serializable InvocationHandler exposed

● Allows mapping a proxy to ANY method call on the 
proxy interface

● Similar exploit to EventHandler, but more complex 
setup of the serialized object graph

● More info: 
http://www.pwntester.com/blog/2013/12/16/cve-
2011-2894-deserialization-spring-rce/ 



commons-fileupload

● Component to simplify file uploads in Java apps

● DiskFileItem class implements readObject()

● The readObject method creates a tmp file on disk:
– tempFile = new File(tempDir, tempFileName);

● tempDir is read from the repository private attribute 
of the class, exposing a poison null byte flaw (file-
writing code is native, now patched)

● An attacker can provide a serialized instance of DFI 
with a null-terminated full path value for the 
repository attribute: /path/to/file.txt\0

● commons-fileupload code embedded in Tomcat



Restlet + DFI

● Upload a JSP shell to achieve RCE

● Solution #1: don't deserialize untrusted content

● Solution #2: don't introduce flaws in 
readObject()/readResolve()

● Solution #3: type checking with look-ahead 
deserialization (Pierre Ernst): 
http://www.ibm.com/developerworks/java/library/se
-lookahead/index.html 

● Or notsoserial: 
https://tersesystems.com/2015/11/08/closing-the-
open-door-of-java-object-serialization/



Dozer XML ↔ Binary Mapper

● Uses reflection-based approach to type conversion

● Used by e.g. Apache Camel to map types

● If used to map user-supplied objects, then an 
attacker can provide a dynamic proxy

● There must either be an object being mapped to with 
a getter/setter method that matches a method in an 
interface on the server classpath, or a manual XML 
mapping that allows an attacker to force the issue.

● InvocationHandler must be serializable (implements 
Serializable)

● EventHandler is not



Dozer CVE-2014-9515

● Wouter Coekaerts reported a serializable 
InvocationHandler in older versions of Spring: CVE-
2011-2894

● Using Alvaro Munoz's CVE-2011-2894 exploit, I was 
able to develop a working Dozer exploit. It is only 
exploitable if all the aforementioned conditions are 
met, and vuln Spring JARs are on the classpath

● Live demo: Dozer RCE 
https://github.com/pentestingforfunandprofit/resear
ch/tree/master/dozer-rce

● Reported upstream since Dec 2014, no response: 
https://github.com/DozerMapper/dozer/issues/217



Other InvocationHandlers

● Any common component is useful, but in the JDK 
itself means universally exploitable

● Three other InvocationHandlers in Java 7/8:
● CompositeDataInvocationHandler

● MbeanServerInvocationHandler

● RemoteObjectInvocationHandler

● CompositeDataInvocationHandler: forwards getter 
methods to a CompositeData instance. No use.



MBeanServerInvocationHandler

● Proxy to an MBean on the server. Potentially useful, 
e.g. if MBeans used by JBoss Worm are present.

● Problem 1: attacker must specify correct JMX URL
● Solution 1: JMX is exposed locally on port 1099

● Solution 2: Brute force JMX URL via Java PID

● Problem 2: attacker cannot control code that is run 
for any method call, on specific method calls

● EventHandler exploits work no matter which 
method is invoked on the proxy object. 
MBeanServerInvocationHandler simply calls the 
method of the same name on the MBean. 



RemoteObjectInvocationHandler

● Proxy to a remote object exported via RMI

● Problem 1: attacker must know details of a remote 
object exported to the server

● Solution: JMX registry is exposed via RMI. If JMX 
is exposed locally on port 1099, the attacker 
could craft an object instance that points to the 
JMX RMI URL

● Problem 2: attacker cannot control code that is run 
for any method call, on specific method calls

● Future work: look for more potentially exploitable 
InvocationHandlers



Property-oriented programming

● Instantiate a complex object graph whose root 
node is serializable

● Similar to ROP, exploit conditions in classes on the 
classpath so deserialization of the object graph 
lands in execution of arbitrary code

● Shouts to Stefan Esser for considering this in PHP 
first

● http://www.slideshare.net/frohoff1/appseccali-2015-
marshalling-pickles Slides 45 onwards



Gadget: commons-collection

● Serializable InvocationHandler in a library that is 
almost universally on the classpath

● Presented at AppSecCali and still unpatched: 
http://www.slideshare.net/codewhitesec/exploiting-
deserialization-vulnerabilities-in-java-54707478  

● FoxGlove reported multiple vectors for untrusted 
deserialization in JBoss, WebSphere, Jenkins, 
WebLogic, etc.: 
http://foxglovesecurity.com/2015/11/06/what-do-
weblogic-websphere-jboss-jenkins-opennms-and-
your-application-have-in-common-this-vulnerability/ 



Tools & future research

● Ysoserial for finding flaws and aggregating 
payloads

● Look-ahead deserialization tools
● PoC by Pierre Ernst @ IBM

● Notsoserial

● Serialkiller

● More gadgets, more deserialization vectors

● Gadget entirely in the JDK would be awesome



Where lies the vulnerability?

● When at Red Hat, I assigned CVEs to vulnerable 
classes, and publicly stated:



Where lies the vulnerability?

● I was wrong!

● The vulnerability lies in the application performing 
deserialization of untrusted data without look-
ahead type validation



Questions?
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